学习模态不变功能是可见热跨模板人员重新凝视(VT-REID)问题的核心,其中查询和画廊图像来自不同的模式。现有工作通过使用对抗性学习或仔细设计特征提取模块来隐式地将像素和特征空间中的模态对齐。我们提出了一个简单但有效的框架MMD-REID,通过明确的差异减少约束来降低模态差距。 MMD-REID从最大均值(MMD)中获取灵感,广泛使用的统计工具用于确定两个分布之间的距离。 MMD-REID采用新的基于边缘的配方,以匹配可见和热样品的类条件特征分布,以最大限度地减少级别的距离,同时保持特征辨别性。 MMD-Reid是一个简单的架构和损失制定方面的框架。我们对MMD-REID的有效性进行了广泛的实验,以使MMD-REID对调整边缘和阶级条件分布的有效性,从而学习模型无关和身份的一致特征。所提出的框架显着优于Sysu-MM01和RegDB数据集的最先进的方法。代码将在https://github.com/vcl-iisc/mmd -reid发布
translated by 谷歌翻译
最近在生物医学中大型数据集的可用性激发了多种医疗保健应用的代表性学习方法的开发。尽管预测性能取得了进步,但这种方法的临床实用性在暴露于现实世界数据时受到限制。在这里,我们开发模型诊断措施,以检测部署过程中潜在的陷阱,而无需访问外部数据。具体而言,我们专注于通过数据转换建模电生理信号(EEG)的现实数据转移,并通过分析a)模型的潜在空间和b)预测性不确定性在这些变换下扩展了常规的基于任务的评估。我们使用公开可用的大规模临床EEG进行了多个EEG功能编码器和两个临床相关的下游任务进行实验。在这种实验环境中,我们的结果表明,在提出的数据转移下,潜在空间完整性和模型不确定性的度量可能有助于预测部署过程中的性能退化。
translated by 谷歌翻译
在许多实际情况下,随着时间的推移,用于训练机器学习模型的数据将获得。但是,神经网络模型努力不断学习新概念,而不会忘记过去学到了什么。这种现象被称为灾难性的遗忘,由于实际的约束,通常很难预防,例如可以存储的数据量或可以使用的有限计算源。此外,从头开始培训大型神经网络,例如变形金刚,非常昂贵,需要大量的培训数据,这可能在感兴趣的应用程序领域中不可用。最近的趋势表明,基于参数扩展的动态体系结构可以在持续学习中有效地减少灾难性遗忘,但是这种需要复杂的调整以平衡不断增长的参数,并且几乎无法在任务中共享任何信息。结果,他们难以扩展到没有大量开销的大量任务。在本文中,我们在计算机视觉域中验证了一种最新的解决方案,称为适配器的自适应蒸馏(ADA),该解决方案是为了使用预先训练的变压器和适配器在文本分类任务上进行连续学习。我们在不同的分类任务上进行了经验证明,此方法在不进行模型或增加模型参数数量的情况下保持良好的预测性能。此外,与最先进的方法相比,推理时间的速度明显更快。
translated by 谷歌翻译
本文提出了一种新颖的像素级分布正则化方案(DRSL),用于自我监督的语义分割域的适应性。在典型的环境中,分类损失迫使语义分割模型贪婪地学习捕获类间变化的表示形式,以确定决策(类)边界。由于域的转移,该决策边界在目标域中未对齐,从而导致嘈杂的伪标签对自我监督域的适应性产生不利影响。为了克服这一限制,以及捕获阶层间变化,我们通过类感知的多模式分布学习(MMDL)捕获了像素级内的类内变化。因此,捕获阶层内变化所需的信息与阶层间歧视所需的信息明确分开。因此,捕获的功能更具信息性,导致伪噪声低的伪标记。这种分离使我们能够使用前者的基于跨凝结的自学习,在判别空间和多模式分布空间中进行单独的对齐。稍后,我们通过明确降低映射到同一模式的目标和源像素之间的距离来提出一种新型的随机模式比对方法。距离度量标签上计算出的距离度量损失,并从多模式建模头部反向传播,充当与分割头共享的基本网络上的正常化程序。关于合成到真实域的适应设置的全面实验的结果,即GTA-V/Synthia to CityScapes,表明DRSL的表现优于许多现有方法(MIOU的最小余量为2.3%和2.5%,用于MIOU,而合成的MIOU到CityScapes)。
translated by 谷歌翻译